SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR

(AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – $517583\,$

QUESTION BANK (DESCRIPTIVE)

Subject with Code: STATISTICAL METHODS FOR DATA SCIENCE (23HS0839) Branch: CAD

Year & Sem: II-B. Tech & II-Sem

Regulation: R23

<u>UNIT-I</u> BASIC CONCEPTS

1	a) Define types of random variables with illustrations.	[L2][CO1]	[2M]
	b) State the properties of random variables.	[L1][CO1]	[2M]
	c) The mean and variance of a binomial distribution are 4 and $4/3$	[L1][CO1]	[2M]
	respectively. Find n.p,q.		
	d) Define Population and Sample with illustrations	[L1][CO1]	[2M]
	e) State the invariance property of Consistent estimator	[L1][CO1]	[2M]
2	A random variable X has the following probability function	[L5][CO1]	[10M]
	X 0 1 2 3 4 5 6 7		
	P(x) = 0 K 2K 2K 3K K ² 2K ² 7K ² +K		
	Determine (i) K (ii) Evaluate $P(X \ge 6)$ and $P(0 \le X \le 5)$ (iii) if $P(X \le K) \ge 1/2$.		
	find the minimum value of K (iv) Mean.		
3	Two dice are thrown. Let X assign to each point (a,b) is S the maximum of	[L5][CO1]	[10M]
	its numbers i.e, $X(a,b)=max(a,b)$. Find the probability distribution. X is a		
	random variable with $X(s) = \{1, 2, 3, 4, 5, 6\}$. Also, find the mean and variance		
	of the distribution.		
4	Probability density function of a random variable X is	[L1][CO1]	[10M]
	$\int \frac{1}{2}\sin x, for 0 \le x \le \pi$		
	$f(x) = \begin{cases} 2 \\ 0 \\ elsewhere \end{cases}$. Find the mean, mode and median of the		
	distribution and also find the probability between 0 and $\pi/2$.		
5	a) Derive mean and variance of Binomial distribution		[5M]
•	b) Out of 800 families with 5 children each, how many would you expect to	[L3][C01]	[5M]
	have (i) 3 boys (ii) 5 girls (iii) either 2 or 3 boys. Assume equal probabilities		[01/2]
	for boys and girls.		
6	a) Derive mean and variance of Poisson distribution.	[L5][CO1]	[5M]
	b) If 2% of light bulbs are defective. Find the probability that (i) 2 defective	[L1][C01]	[5M]
	items (ii) at least 3 defective items (iii) $P(2 < x < 5)$ in a sample of 100.		
7	a) If X is a Poisson variate such that $3P(X = 4) = \frac{1}{2}P(X = 2) + P(X = 0)$,	[L1][CO1]	[5M]
	find (i) Mean (ii) $P(X < 2)$		
	b) If X is a normal variate with mean 30 and standard deviation 5	[L1][C01]	[5M]
	Find $P(26 \le X \le 40)$	[21][001]	[011]
8	In a competition of 1000 cases, the mean of a certain test is 14 and standard	[L1][CO1]	[10M]
	deviation 2.5. Assuming the distribution to be normal, find		
	(i) How many students score between 12 and 15		
	(ii) How many students score above 18		
	(iii) How many students score below 8.		
9	In a Normal distribution, 7% of the items are under 35 and 89% are under	[L5][CO1]	[10M]
	63. Determine the mean and variance of the distribution		
10	Explain the characteristics of a good estimator	[L2][CO1]	[10M]
11	If X_1, X_2, X_3 be independent random variables from the population with mean	[L1][CO1]	[10M]
1	μ and variance σ^2 . Find which of the following estimators for μ are unbiased		
	and which is most efficient estimator. $x_{1+x_{2}+x_{3}}$ $x_{1+2x_{2}}$ $x_{1+2x_{2}+2x_{2}}$		
1	$T_1 = \frac{\Lambda 1 + \Lambda 2 + \Lambda 3}{3}, T_1 = \frac{\Lambda 1 + 2\Lambda 2}{3}, T_1 = \frac{\Lambda 1 + 2\Lambda 2 + 3\Lambda 3}{3}$		
-			•

POINT ESTIMATION

1	a) Define estimation, estimate and estimator													[L1][CO2]	[2M]		
	b) De	fine	meth	od of :	mom	ents.										[L1][CO2]	[2M]
	c) De	fine	norm	al equ	ation	s for	two-	variat	le rel	ation	ships	Y on	X1, 2	K2 in t	he	[L1][CO2]	[2M]
	me	ethod	of le	ast sq	uares												
	d) Wl	nat is	the f	ormu	la for	the 1	nodif	ïed m	inim	ım ch	ii-squ	are m	ethod	!?		[L1][CO2]	[2M]
	e) De	fine	the A	sympt	totic l	Maxi	imum	Like	lihoo	l Esti	mator	•					
2	a) De	scrib	e the	metho	od of	max	imum	ı likel	ihood	l estin	natior	ı.				[L1][CO2]	[5M]
	b) Lis	t the	prop	erties	of m	axim	um li	keliho	ood e	stimat	tion.					[L1][CO2]	[5M]
3	In a w	vatch	repa	ir sho	p, the	serv	vice ti	me in	minu	ites is	: 14, 1	7, 27	, 18,	12, 8,		[L1][CO2]	[10M]
	22, 13	3, 19	and 1	12. Gi	ve a r	naxi	mum	likeli	hood	estim	ate of	fmea	n serv	vice tin	ne		
	with t	the as	ssum	ption t	that th	ne se	rvice	time	follov	vs an	expo	nentia	al dist	ributio	n		
	with p	parar	neter	λ.									22				54.03.63
4	Suppo	ose tl	hat th	e ranc	lom s	amp	le has	a nor	mal c	listrit	oution	Ν(μ	,σ²).			[L3][CO2]	[10M]
	Determine the Maximum Likelihood estimator (i) from -2 = 1 (ii) from -2 and a set 0 is low even																
_	(1) for μ when $\sigma^2 = 1$. (11) for σ^2 when $\mu=0$ is known.															[[]]	
5	a) A s	simpl	e ran	dom s	ampi	e or	size r	1 1s tai	ken fr	om tr	ie pro	babii	ity de	nsity		[L3][CO2]	[5][1]
	functi	on f	$(\mathbf{x}) =$	2θxe	-0x ,	x >	0,θ Σ	> 0 is	an ui	nknov	vn pa	rame	ter. Ca	alculat	e		
	the es	tima	tor of	θby	the n	netho	od of 1	mome	ents.		1.	. 1.		•			[[]]
	b) Lei	$t x_1, .$	x_2, x_3	(x_1, \dots, x_n)	be a	ranc	lom s	ample	e from	the c	discre	te dis	stribut	10n		[L3][C02]	[5][1]
	P(X ₂	$_{1} = 1$	$) = \frac{1}{2}$	$\frac{2(1 \ 0)}{2-\theta}$, (X ₂	= 2	$() = \frac{1}{2}$	$\frac{\theta}{2-\theta}$, v	vhere	θ ε((),1) is	unk	nown.				
	Find t	the e	stima	tor θ	by the	e met	thod of	of mo	ments	5.							
6	a) Let	t x ₁ , :	x_{2}, x_{3}	, x _n	be a	rand	lom s	ample	of si	ze n f	rom p	oopul	ation	given l	by	[L3][CO2]	[6M]
						(2	$2(\theta -$	<i>x</i>)	0	- x	/ 0						
					f(x)	= {	θ^2	,	0	< x	< 0						
	T ' 1		, . ,	c	0.1)	0	1 0	el	sewh	ere						
	Find a	an es	timat	or of ($\frac{\theta}{1}$ by 1	the m	hetho	$\frac{d \text{ of } n}{1}$	nome	nts.	<u>r</u>	•					F 4N 4 1
	b) Le	(x_1, \ldots)	x_2, x_3	, x _n	be a	ranc	lom s	ample	e of si	ze n 1 tor of	rom a	1 pois	son	lof			[4][4]
	mom	ante	i witi	i parai	netei	λ. Ο	otam		suma	101 01	λÜy	uie ii	letilot	1 01			
7	A trai	nino	data	set of	9 dif	ferer	nt valı	les fo	r mid	seme	ester (sav x) and	end		[L2][C02]	[10M]
	semes	ster (sav v) valu	es are	e give	en bv		1 11110	Jenne		buy n) und	ena			
	X	1)	7	3		16	9		1	7		10	8			
	Y	4	2	39	32	2	50	44	L	55	43		37	43			
	Assu	ning	a line	ear rel	ation	shin		Esti	nate	the na	arame	ters h	v the	metho	d		
	of lea	st sa	uares		uuion	p	<i>j</i> 0 <i>n</i>	. 2501	inaco	ine pe			y une	memo			
8	The f	ollov	ving o	lata re	prese	ents t	he bo	dy we	eight	(Y)kg	g, bod	y len	gth ()	(1)cm		[L2][CO2]	[10M]
	and b	ody l	oread	th (X)	l)cm	of 12	2 rand	lomly	selec	ted se	ea fisł	1.	Č (<i>,</i>			
		X1	12	20	14	25	18	16	10	18	18	20	16	12			
	-	vo	4	7	(10	10	0	4	0	0	10	7	4			
	-	Χ2	4	/	0	12	10	8	4	8	9	10	/	4			
		Y	0.5	0.8	0.7	2	1.2	0.9	0.4	0.9	1.4	1.5	0.8	0.6			
	Assu	ne th	e line	ear mo		ot Y,	XIa	nd X2	as Y	= a -	⊦bX1	+ c 2	x2. E	stimate	•		
	the pa	arame	eters	a, b ð	c c by	/ the	meth	od of	ieast	squar	res	1 .1		1.6.1			[10] []
9	$\prod_{m=1}^{m} p(\lambda)$	(, U)	$= \theta^{*}$	(1 —		101	rand(om va	inable	: x=0,	1. F1	na th	= 100	-0			
		uum ∫∼ –	CIII-S(- 1)	quare	esum	iator	010	uased	onth	le par	ution	s <i>н</i> ₁	- {X	– ∪},			
10	$H_2 = Const$	$\lambda = \frac{1}{2}$	- Ij I rand	lom er	mnla	of	170 n	from	an ev	none	ntial	lictrik	ution	with	-+		[10]/[]
10	naran	neter	Aha	ving n	d f f	f(v A) — 4	$h_{0} = \theta x$			leulat	e the	modi	fied			
	minin	num	chi_e	unate unate	ectim	i (A, U nator	y = c	haced	on th	e nar	tition		moul	iiu			
	Δ. –	:{v () < v	quare < ∩ ا	$5 $ Δ		$\{\mathbf{x} \mathbf{v}\}$	> 0 5) }	c par	auon	3					
	1 11 -	∖ر∧ ي	, <u> </u>	U.,	л, п	2 -	, גר, ג	~ 0.0)						1		1

11 Let $x_1, x_2, x_3, ..., x_n$ be a random sample of Bernoulli Distribution $f(x, p) = \begin{bmatrix} L3 \end{bmatrix} \begin{bmatrix} CO2 \end{bmatrix}$ [10M] $p^x(1-p)^{1-x}$ Show that the Bernoulli distribution is asymptotically normal.

<u>UNIT-III</u>

INTERVAL ESTIMATION

1	a) Define Interval Estimation and give one example	[L1][CO3]	[2M]
	b) Define confidence interval and confidence coefficient	[L1][CO3]	[2M]
	c) Find the lower, upper confidence limits and also confidence coefficient for	[L3][CO3]	[2M]
	$P[0 \le \theta \le 1.5] = 0.90$		
	d) What are the confidence intervals for Population mean when population	[L1][CO4]	[2M]
	Variance is known and population variance is unknown		
	e) Write the confidence interval for Population proportion population	[L1][CO4]	[2M]
	Variance is known and population variance is unknown		
2	a) A random sample of 800 units from a large consignment showed that 200	[L3][CO3]	[5M]
	were damaged. Construct 95% confidence limits for the population		
	proportion of damaged units in the consignment.		
	b) A factory is producing 50,000 pairs of shoes daily from a sample of 500	[L2][CO3]	[5M]
	pairs 2% were found to be substandard quality. Estimate the no. of pairs that		
	can be reasonably expected to be spoiled in the daily production and assign		
	limits at 95% confidence level.		
3	a) Out of 300 households in a town 123 have T.V sets, find 95% confidence	[L3][CO3]	[5M]
	limits to the true value of proportion of households with T.V sets in the		
	whole town.		
	b) Out of 20000 customers ledger accounts a sample of 600 accounts was	[L3][CO3]	[5M]
	taken to test the accuracy of posting and balancing where in 45 mistakes		
	were found. Assign limits within which the number of defective cases can be		
	expected at 5% level of significance.		
4	A small poll of 100 voters chosen at random from all voters in a given	[L3][CO3]	[10M]
	district indicated that 55% of them were in favor of a particular candidate.		
	Construct a) 95% b) 98% c) 99.73% confidence limits for the proportion		
	of all the voters in favor of the candidate.		
5	In a random sample of 400 adults and 600 teenagers who watched a certain	[L3][CO3]	[10M]
	television program 100 adults and 300 teenagers indicated that they liked it.		
	Construct a) 95% b) Construct 99% confidence intervals for the difference		
	in the proportion of all adults and all teenagers who watched for program and		
	liked it.	II 11(001)	[7]
0	a) In a certain newspaper, it was given that 5% of Canadians are initerate and that 7% of Americana are illiterate. In a sample of 1005 Canadians and 1015		
	that 1% of Americans are initerate. In a sample of 1005 Canadians and 1015		
	h) From a lot of units produced by Machine A a sample of 500 is drawn and		[5M]
	b) From a for or units produced by Machine A, a sample of 500 is drawn and tested for a quality characteristic. It is found that 16 units are not meeting		
	specification. Another sample of size 100 is drawn from a lot of similar units		
	produced by Machine B and tested. In this case only 3 units are found to be		
	not meeting the specification. Obtain 99% confidence limits for the		
	difference of proportions of detective units produced by two Machines		
7	a) A random sample of size n=100 is taken from a population with σ -5.1	[L3][CO4]	[5M]
'	Given that the sample mean $\bar{r} = 21.6$ Construct 95% confidence interval for		
	population mean μ		
	b) The average monthly electricity consumption for a sample of 100 families	[1,3][CO4]	[5M]
	is 1250 units Assuming the S D of electric consumption of all families is 150		
	units Construct a 95% confidence interval estimate of the actual mean		
	electric consumption		
	b) The average monthly electricity consumption for a sample of 100 families is 1250 units Assuming the S.D of electric consumption of all families is 150 units. Construct a 95% confidence interval estimate of the actual mean electric consumption.	[L3][CO4]	[5M]

8	a) In a	n air nollut	ion study the	followi	ng amounts of susp	ended benzene	[I 3][CO4]	[5M]
0	a) II a solvat	ul all pollut Ne organic	matter(in micr	ograms	per cubic meter) w	ere obtained at an		
	experi	ment statio	n for eight dif	ferent sa	moles of air 2.2.1	8 3 1 2 0 2 4		
	202	1 and 12	r the corresponding					
	2.0, 2.	1 and 1.2	i ule corresponding					
-	h A s	ample of 7	hoves of a cer	tain cer	als with the follow	ving weights: 775		[5M]
	780, 7	/81, 795, 80	al for variance.					
9	a) Fin	d the 95% o	confidence inte	erval for	the variance and S	.D of the nicotine	[L3][CO4]	[5M]
	conter	nt of cigaret	ttes manufactu	red. If a	random sample of	20 cigarettes has a		
	S.D of	f 1.6mg. As	sume that the	variance	e is normally distrib	outed.		
	b) Fin	d 90% conf	fidence interva	l for the	e variance for the nu	umber of storms	[L3][CO4]	[5M]
	per ye	ar in the At	tlantic basin. A	a randon	n sample of 10 year	rs has been used.		
	They a	are: 10, 5, 1	2, 11, 13, 15,	19, 18,	14, 16. Assume the	distribution is		
	approx	ximately no	ormal.					
10	From	the lots of t	ransparent pol	yester f	ilm sheets produced	d by two machines	[L5][CO4]	[10M]
	sampl	es are taker	n from both the	e machii	nes and thickness va	alues of the film		
	sheets	in millimic	crons are meas	ured. Tl	he results are given	below		
		Machine	Sample size	Mean	Sample variance			
		1	10	115	25			
		2	12	112	9			
	(i) Co	mpute 95%	confidence in	tervals f	for the difference of	f population means		
	assum	ing that the	unknown por	ulation	variances are equal			
	(ii) Co	ompute 99%	6 confidence in	ntervals	for the difference of	of population		
	means	assuming	that the unkno	wn popi	ulation variances ar	e not equal.		
11	a) Giv	ven n1 = 15	$n^2 = 12, S^1 = 12$	3.07 and	1 S2 = 0.80. Compu	ite 98% confidence	[L5][CO4]	[5M]
	interv	al for the ra	tio of the popu	ulation v	variances.			
	b) Am	nong 11 pat	ients in a certa	in study	, the S.D of the pro	operty of interest	[L5][CO4]	[5M]
	was 5	.8. In anoth	er group of 4 r	oatients	the S.D was 3.4. Co	onstruct a 95%	Jr J	LJ
	confid	lence interv	al for the ratio	of the v	variances of these ty	wo populations.		

R23

UNIT-IV

TESTING OF HYPOTHESES

1	a) Define Null hypothesis.	[L1][CO5]	[2M]
	b) Define Alternative hypothesis.	[L1][CO5]	[2M]
	c) What is Type-I error?	[L1][CO5]	[2M]
	d) What is Type-II error?	[L1][CO5]	[2M]
	e) Define the contingency table.	[L1][CO5]	[2M]
2	a) Explain about errors in sampling.	[L2][CO5]	[5M]
	b) Let p be the probability that a coin will fall head in a single toss in order to	[L3][CO5]	[5M]
	test H_0 : p = 0.5 against H_1 : p = 0.75. The coin is tossed 5 times and H_0 is		
	rejected if more than 3 heads are obtained. Calculate the probability of type-l		
	error and power of test.		
3	Given the probability function $f(x, \theta) =\begin{cases} \frac{1}{\theta}, 0 \le x \le \theta \\ 0, otherwise \end{cases}$ and test the hypothesis $H_0: \theta = 1$ against $H_1: \theta = 2$ by means of single observed value of x what would be the sizes of type-I and type-II errors. If you choose the interval (i)X ≥ 0.5 (ii) $1 \le X \le 1.5$ as the critical region? Also, Compute the power function of the test.	[L3][CO5]	[10M]

4	a) If $x \ge 1$ is the critical region for testing $H_0: \theta = 2$ against the alternative $H_1: \theta = 1$ on the basis of the single observation from the population $f(x, \theta) = \theta e^{-\theta x}, 0 \le x < \infty$, Obtain the value of type-I and type-II errors.	[L2][CO5]	[5M]
	b) If $x \ge 0$ is the critical region for testing $H_0: \theta = 5$ against the alternative $H_1: \theta = 10$ on the basis of the single observation from the population $f(x, \theta) = \frac{1}{2}e^{-x/\theta}, 0 \le x < \infty$, Obtain the value of type-I and type-II errors.	[L1][CO5]	[5M]
5	State and prove Neyman-Pearson Fundamental Lemma	[1.3][CO5]	[10M]
6	Suppose x_1, x_2, \ldots, x_n is a random sample from a normal distribution with mean μ and variance 16. Find the best critical region with a sample size of n=16 and a significance level $\alpha = 0.05$ to test the simple null hypothesis H_0 : $\mu = 10$ against a simple alternative hypothesis H_1 : $\mu = 15$.	[L3][C05]	[10M]
7	a) Suppose X is a single observation from a population with p.d.f $f(x, \theta) = \theta x^{\theta-1}$ for $0 < x < 1$. Find the test with best critical region, find the most powerful test with significance level $\alpha = 0.05$ for testing the simple null hypothesis H ₀ : $\theta = 3$ against the simple alternative hypothesis H ₀₁ : $\theta = 2$	[L3][CO5]	[5M]
	b) Obtain best critical region for testing null hypothesis $H_0: \lambda = \lambda_0$ against $H_1: \lambda = \lambda_1$ for an exponential distribution $f(x, \lambda) = \lambda e^{-\lambda x}$	[L1][CO5]	[5M]
8	Let $x_1, x_2, x_3, \dots, x_{25}$ be a random sample of 25 from N(θ , 100). Find uniformly most powerful critical region of size $\alpha = 10\%$ for testing H ₀ : $\theta = \theta_0 = 75$ against H ₁ : $\theta = \theta_1 > 75$	[L3][CO5]	[10M]
9	Explain about Likelihood Ratio Test.	[L2][CO5]	[5M]
	Write the properties Likelihood Ratio Test	[L1][CO5]	[5M]
10	Let x_1, x_2, \dots, x_n be a random sample of size n from the normal population	[L4][CO5]	[10M]
	with mean μ and variance σ^2 where μ and σ^2 are unknown. Test $H_0: \mu = \mu_0$ by the method of likelihood ratio test.		
11	Let x_1, x_2, \dots, x_n be a random sample of n observations from $N(\mu, \sigma^2)$ we need to test the null hypothesis H_0 : $\sigma^2 = \sigma_0^2$ against H_1 : $\sigma^2 \neq \sigma_0^2$ by the method of likelihood ratio test	[L4][CO5]	[10M]

<u>UNIT-V</u>

SMALL SAMPLE TESTS

1	a) Define t-test for single mean.											[L1][CO6]	[2M]
	b) V	Write the form	[L1][CO6]	[2M]									
	c) V	What is the Nu	[L1][CO6]	[2M]									
	d) V	What is the di	fferen	ce bet	ween l	F-test	and t-	tests	?			[L1][CO6]	[2M]
	e) V	Write the form	nula fo	or Chi-	squar	e test	for go	odne	ess of	fit.		[L1][CO6]	[2M]
2	A sample of 26 bulbs gives a mean life of 990 hours with a S.D of 20 hours. The manufacturer claims that the mean life of bulbs is 1000 hours. Is the sample not up to the standard.									of 20 hours. Is the	[L4][CO6]	[5M]	
	Find the maximum difference that we can expect with probability 0.95 between the mean of samples of sizes 10 and 12 from a normal population if their standard deviations are found to be 2 and 3 respectively.										ty 0.95 population if	[L1][CO6]	[5M]
3	3 Two independent samples of 8 and 7 items had the following values										lues	[L2][CO6]	[10M]
		Sample-I	11	11	13	11	15	9	12	14			
		Sample-II	9	11	10	13	9	8	10	-			
	Is the difference between the means of samples significant?												

R23

4	4 Samples of two types of electrical light blubs were tested for length of life [L2][CO6 and following data were obtained									
		Type I	Type II							
	Sample numbers	8	7							
	Sample mean	1234 hrs	1036 hrs							
	Sample S.D	36 hrs	40 hrs							
	Is the difference in the	means sufficie	ent to warrant that	type I is superior						
_	to type II regarding length	of life	1 1	11 / 11 /1		[10] []				
5	To examine the hypothesis wives an investigator took	a sample of 10	ands are more intel	ligent than the	[L4][CO6]					
	test which measures the I.Q	. The results a	are as follows:	linistered them u						
	Husbands 117 105	97 105	123 109 86	78 103 107						
	Wives 106 98	87 104	116 95 90	69 108 85						
	Test the hypothesis 0.05 and also calculate E-te	with a reasonal	ble test at the leve	el of significant of						
6	Scores obtained in a shooting	ng competition	n by 10 soldiers be	fore and after	[L4][CO6]	[10M]				
	intensive training are giv	en below:								
	Before 67 24 57	55 63 54	4 56 68 33	43						
	Δfter 70 38 58	58 56 67	7 68 75 42	38						
	Test whether the intens	ive training is	useful at 0.05 leve	el of significance.						
7	Blood pressure of 5 women	before and aft	ter intake of a cert	ain drug are given	[L4][CO6]	[10M]				
	below									
	Before 110	120	125 13	125						
	After 120	118	125 13	6 121						
	Test whether the significan	it change in bl	lood pressure at 1%	% level of						
8	The nicotine in milligrams	of two sample	es of tobacco were	found to be as	[L2][CO6]	[10M]				
	follows.	I I I			[][]	[]				
	Sample A 24	27 2	26 21 2	25						
	Sample B 27	<u>30</u> 2	$\frac{28}{31}$	22 36						
	population.	two samples n	lave come from th	e same normal						
9	A pair of dice are thrown 3	60 times and the	he frequency of ea	ach sum is	[L4][CO6]	[10M]				
	indicated below:			· · · · · · · · · · · · · · · · · · ·						
	Sum 2 3	450	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 11 12						
	Would you say that the	<u> 35 37 4</u> he dice are fair	$\begin{array}{c c} 14 & 05 & 51 & 42 \\ \hline 00 & \text{the basis of the } \end{array}$	26 14 14						
	at 0.05 level of significant?		on the basis of the	e em-square test						
10	The following table gives t	he classification	on of 100 workers	according to	[L4][CO6]	[10M]				
	gender and nature of work.	x is independent of								
	the gender of the worker (u	T- (-1								
			Unstable	I Otal						
	Males	40	20	60						
	Females	10	30	40						
11	Total	50	50	100		[10] 47				
11	A random sample of size 2 and a variance of 25 Test t	U Irom a norma he hypothesis	al population give	n S D is 8 at 5%	[L4][CU6]					
	level of significance.									

R23